157 research outputs found

    Using exomarkers to assess mitochondrial reactive species in vivo

    Get PDF
    Background: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. Scope of review: One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. Major conclusions and general significance: Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Abbreviations: EPR, electron paramagnetic resonance; GFP, green fluorescent protein; 4-HNE, 4-hydroxynonenal; MitoB, 3-(dihydroxyboronyl)benzyltriphenylphosphonium bromide; MitoP, (3-hydroxybenzyl)triphenylphosphonium bromide; ROS, reactive oxygen species; SOD, superoxide dismutase; TPMP, methyltriphenylphosphonium; TPP, triphenylphosphonium catio

    A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes

    Get PDF
    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycaemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs following the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal and disruption to mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear due to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycaemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycaemia in both cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging

    Measurement of H<sub>2</sub>O<sub>2</sub> within living drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix

    Get PDF
    Hydrogen peroxide (H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; correlates with aging, it may not be causative

    The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell– and antibody-mediated rejection

    Get PDF
    The XV. Banff conference for allograft pathology was held in conjunction with the annual meeting of the American Society for Histocompatibility and Immunogenetics in Pittsburgh, PA (USA) and focused on refining recent updates to the classification, advances from the Banff working groups, and standardization of molecular diagnostics. This report on kidney transplant pathology details clarifications and refinements to the criteria for chronic active (CA) T cell–mediated rejection (TCMR), borderline, and antibody-mediated rejection (ABMR). The main focus of kidney sessions was on how to address biopsies meeting criteria for CA TCMR plus borderline or acute TCMR. Recent studies on the clinical impact of borderline infiltrates were also presented to clarify whether the threshold for interstitial inflammation in diagnosis of borderline should be i0 or i1. Sessions on ABMR focused on biopsies showing microvascular inflammation in the absence of C4d staining or detectable donor-specific antibodies; the potential value of molecular diagnostics in such cases and recommendations for use of the latter in the setting of solid organ transplantation are presented in the accompanying meeting report. Finally, several speakers discussed the capabilities of artificial intelligence and the potential for use of machine learning algorithms in diagnosis and personalized therapeutics in solid organ transplantation

    Mitochondrial pharmacology.

    Get PDF
    Mitochondria are being recognized as key factors in many unexpected areas of biomedical science. In addition to their well-known roles in oxidative phosphorylation and metabolism, it is now clear that mitochondria are also central to cell death, neoplasia, cell differentiation, the innate immune system, oxygen and hypoxia sensing, and calcium metabolism. Disruption to these processes contributes to a range of human pathologies, making mitochondria a potentially important, but currently seemingly neglected, therapeutic target. Mitochondrial dysfunction is often associated with oxidative damage, calcium dyshomeostasis, defective ATP synthesis, or induction of the permeability transition pore. Consequently, therapies designed to prevent these types of damage are beneficial and can be used to treat many diverse and apparently unrelated indications. Here we outline the biological properties that make mitochondria important determinants of health and disease, and describe the pharmacological strategies being developed to address mitochondrial dysfunction

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s
    corecore